0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Web Crippling Behaviour of Cold-Formed High Strength Steel Unlipped Channel Beams

Author(s):
ORCID
ORCID

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 12
Page(s): 291
DOI: 10.3390/buildings12030291
Abstract:

Cold-formed sections (CFS) fabricated using high strength steel have recently been utilised in construction due to their numerous advantages, such as higher load-to-weight ratio, flexibility of shape, and availability in relatively long spans. High strength CFS channel sections can be used as purlins and joists in structural systems; thus, they are vulnerable to different buckling instabilities, including web crippling. Predicting their web crippling capacity using the current design guidelines may be insufficient due to their empirical nature. This study, therefore, aims to investigate the web crippling capacity of high strength unlipped CFS sections under End-Two-Flange (ETF) loading conditions. Numerical simulations were carried out using nonlinear finite element (FE) analysis. The developed models were first validated against available experimental data and then used as a base for conducting an extensive parametric study. The ultimate web crippling capacity obtained from the parametric study was used to assess the accuracy of the available design equations in the standards and those proposed in the relevant studies. The assessment revealed that the existing design equations are not suitable for predicting the ultimate web crippling capacity for high strength CFS channel sections under the ETF loading condition. Thus, a modified design equation was proposed, following the same technique of current design standards, and a new Direct Strength Method (DSM) approach was developed.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10661183
  • Published on:
    23/03/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine