Vibration-Based Damage Prediction in Composite Concrete–Steel Structures Using Finite Elements
Author(s): |
Mario D. Cedeño-Rodríguez
Sergio J. Yanez Erick I. Saavedra-Flores Carlos Felipe Guzmán Juan Carlos Pina |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 15 January 2025, n. 2, v. 15 |
Page(s): | 200 |
DOI: | 10.3390/buildings15020200 |
Abstract: |
The prediction of structural damage through vibrational analysis is a critical task in the field of composite structures. Structural defects and damage can negatively influence the load-carrying capacity of the beam. Therefore, detecting structural damage early is essential to preventing catastrophic failures. This study addresses the challenge of predicting damage in composite concrete–steel beams using a vibration-based finite element approach. To tackle this complex task, a finite element model to a quasi-static analysis emulating a four-point pure bending experimental test was performed. Notably, the numerical model equations were carefully modified using the Newton–Raphson method to account for the stiffness degradation resulting from material strains. These modified equations were subsequently employed in a modal analysis to compute modal shapes and natural frequencies corresponding to the stressed state. The difference between initial and damaged modal shape curvatures served as the foundation for predicting a damage index. The approach effectively captured stiffness degradation in the model, leading to observable changes in modal responses, including a reduction in natural frequencies and variations in modal shapes. This enabled the accurate prediction of damage instances during construction, service, or accidental load scenarios, thereby enhancing the structural and operational safety of composite system designs. This research contributes to the advancement of vibration-based methods for damage detection, emphasizing the complexities in characterizing damage in composite structural geometries. Further exploration and refinement of this approach are essential for the precise classification of damage types. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
17.98 MB
- About this
data sheet - Reference-ID
10815965 - Published on:
03/02/2025 - Last updated on:
03/02/2025