0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Vehicle Ride Comfort Analysis Based on Vehicle-Bridge Coupled Vibration

Author(s):


ORCID
Medium: journal article
Language(s): English
Published in: Shock and Vibration, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/5285494
Abstract:

The study in this paper aims to evaluate the effects of vehicle-bridge coupled vibration on the vehicle ride comfort. The mechanical model of both vehicle and bridge subsystems and the vibration differential equations are established, respectively, based on the principle of dynamic balance and finite element method. The APDL command stream for iterative calculation is compiled on the ANSYS platform. The method to evaluate the vehicle ride comfort is established according to the criteria in ISO2631-1-1997. The vehicle dynamic responses and ride comfort are analyzed considering different pavement levels while multiple vehicles pass through the cable-stayed bridge. The analysis results indicate that the dynamic responses of vehicles decrease with the improvement of pavement roughness, resulting in the vehicle ride comfort to be better; the dynamic responses of vehicles increase with the increment of vehicle speed or the decrement of vehicle gravity, resulting in the vehicle ride comfort to be worse. The present research results can provide an insight into the rational design of bridge structure so as to reduce the vehicle-bridge coupling vibration responses and improve the ride quality of drivers and passengers.

Copyright: © 2021 Yichang Zhang, Wusheng Li, Zhe Ji, Guichun Wang
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10676196
  • Published on:
    28/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine