Variable Pressure Difference Control Method for Chilled Water System Based on the Identification of the Most Unfavorable Thermodynamic Loop
Author(s): |
Tingting Chen
Yuhang Han |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 24 April 2024, n. 5, v. 14 |
Page(s): | 1360 |
DOI: | 10.3390/buildings14051360 |
Abstract: |
A variable pressure differential fuzzy control method is proposed based on the online identification method for key parameters and the fuzzy subset inference fuzzy control method of the chilled water system network model. Firstly, a phase plane fuzzy identification method is proposed for the most unfavorable thermal loop. The study focuses on analyzing the trend of room temperature deviation and deviation change in different quadrants in the phase plane. Furthermore, we establish a chilled water pipe network model that recalculates flow variation in both the main pipe and each branch pipe section to eliminate the most unfavorable thermal loop. Finally, the test platform for the fan coil variable flow air conditioning water system was designed and constructed to meet the requirements of energy-saving regulation. Additionally, the network monitoring system for the test platform was completed. The calibration and debugging results demonstrate that the monitoring error is within ±5.0%, ensuring precise control of room temperature at the end of the branch within ±0.5 °C. Results demonstrate that our novel method exhibits superior stability in room temperature control compared to traditional linear variable pressure differential set point controls while achieving energy saving ranging from 4.7% to 6.5%. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.33 MB
- About this
data sheet - Reference-ID
10787490 - Published on:
20/06/2024 - Last updated on:
20/06/2024