Utilization of Different Forms of Demolished Clay Brick and Granite Wastes for Better Performance in Cement Composites
Author(s): |
Jeonghyun Kim
Donwoo Lee Alena Sicakova Namho Kim |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 13 January 2023, n. 1, v. 13 |
Page(s): | 165 |
DOI: | 10.3390/buildings13010165 |
Abstract: |
Clay brick and granite waste are part of the waste generated by construction and demolition activities. The amount of these wastes generated is enormous, but on the one hand, they can be used as a raw material for cement mixtures; thus, it is important to find ways to utilize them efficiently. In this study, clay brick and granite waste were crushed and screened into two size fractions (0.15–2.36 mm for sand replacement and smaller than 0.15 mm for cement replacement), and a total of four different forms of recycled materials were obtained (recycled brick aggregate, recycled brick powder, recycled granite aggregate and recycled granite powder) and used in cement mortar. Various properties (workability, mechanical strength and drying shrinkage) of the mortars were assessed according to standardized test methods. The results showed that the various material forms had different effects on the various properties of cement mortar. At replacement ratios of 10% and 20%, recycled granite showed better workability when used as powder, whereas recycled brick used as aggregate had higher workability. In common, using recycled brick and recycled granite in the form of aggregate was advantageous for the strength development of mortar, while using them in the form of powder helped to mitigate drying shrinkage. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.94 MB
- About this
data sheet - Reference-ID
10712720 - Published on:
21/03/2023 - Last updated on:
10/05/2023