0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Use of Machine Learning Algorithms to Predict Subgrade Resilient Modulus

Author(s):

ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 6, v. 6
Page(s): 78
DOI: 10.3390/infrastructures6060078
Abstract:

Modern machine learning methods, such as tree ensembles, have recently become extremely popular due to their versatility and scalability in handling heterogeneous data and have been successfully applied across a wide range of domains. In this study, two widely applied tree ensemble methods, i.e., random forest (parallel ensemble) and gradient boosting (sequential ensemble), were investigated to predict resilient modulus, using routinely collected soil properties. Laboratory test data on sandy soils from nine borrow pits in Georgia were used for model training and testing. For comparison purposes, the two tree ensemble methods were evaluated against a regression tree model and a multiple linear regression model, demonstrating their superior performance. The results revealed that a single tree model generally suffers from high variance, while providing a similar performance to the traditional multiple linear regression model. By leveraging a collection of trees, both tree ensemble methods, Random Forest and eXtreme Gradient Boosting, significantly reduced variance and improved prediction accuracy, with the eXtreme Gradient Boosting being the best model, with an R2 of 0.95 on the test dataset.

Copyright: © 2021 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10723049
  • Published on:
    22/04/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine