0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Use of Artificial Neural Networks to Predict Wind-Induced External Pressure Coefficients on a Low-Rise Building: A Comparative Study

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-14
DOI: 10.1155/2022/8796384
Abstract:

Wind flow on a bluff body is a complex and nonlinear phenomenon that has been mainly studied experimentally or analytically. Several mathematical methods have been developed to predict the wind-induced pressure distribution on bluff bodies; however, most of them result unpractical due to the mathematical complexity required. Long-short term memory artificial neural networks with deep learning have proven to be efficient tools in the solution of nonlinear phenomena, although the choice of a more efficient network model remains a topic of open discussion for researchers. The main objective of this study is to develop long-short term memory artificial neural network models to predict the external pressure distribution of a low-rise building. For the development of the artificial neural network models, the multilayer perceptron and the recurrent neural network were also employed for comparison purposes. To train the artificial neural networks, a database with the external pressure coefficients from boundary layer wind tunnel tests of a low-rise building is employed. The analysis results indicate that the long-short term memory artificial neural network model and the multilayer perceptron neural network outperform the recurrent neural network.

Copyright: © Josué U. Rodríguez-Alcántara et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10691844
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine