0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Upper Bound Solution of Surrounding Rock Pressure for Deep Cavity Using Nonlinear Hoek–Brown Failure Criterion

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-10
DOI: 10.1155/2018/1490848
Abstract:

The linear failure criterion is generally adopted in the stability problem of geotechnical engineering, whereas the experiments have indicated that there is a nonlinear relationship between the maximum and minimum principal stresses in weak surrounding rock. According to the characteristics of weak rock, the failure mechanism of deep cavity is constructed by combining the nonlinear Hoek–Brown failure criterion and the upper bound theorem of limit analysis. The upper bound solution of the surrounding rock pressure was deduced using the tangent method. The results show that the surrounding rock pressure of deep cavity is affected by surrounding rock grade, cavity depth, and section size. Especially, the influence of the disturbance factor is quite obvious. Upper bound solution based on nonlinear Hoek–Brown failure criterion can fully take the influence of parameters on surrounding rock pressure. Therefore, this method is more scientific than the linear failure criterion to calculate the surrounding rock pressure.

Copyright: © 2018 Cheng-yang Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176403
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine