0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Unified Deflection Theory Model for Multi-Tower Self-Anchored Suspension Bridges with Different Tower–Girder and Cable–Girder Connections

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3945
DOI: 10.3390/buildings14123945
Abstract:

This study presents a unified analytical model for multi-tower self-anchored suspension bridges integrating tower–girder connections (TGCs) and cable–girder connections (CGCs) within the framework of deflection theory. The connections are modeled as horizontal springs, and governing equations are derived based on force equilibrium and compatibility conditions. A comparison with a nonlinear finite element analysis under various live load scenarios confirms the accuracy of the proposed model. A parametric analysis reveals that increasing the CGC stiffness reduces girder deflection, decreasing the maximum vertical deflection by nearly 42.3% when the stiffness is increased from 0 to infinity and moving the maximum displacement from the mid-span section to the mid-tower section. Additionally, CGCs modify the load distribution between the main cable and the girder, limiting the longitudinal displacement of the tower in which the mid-tower displacement is reduced by 45.50%. Tower–girder connections improve the anchoring of the side cable to the tower. When connection stiffness is low, side- and middle-tower stiffness significantly reduce girder deflection, though this effect decreases with increasing stiffness. Enhancing mid-tower stiffness similarly reduces its longitudinal displacement regardless of the tower–girder connection. In longitudinal floating systems, mid-tower displacement rises with increasing side-tower stiffness. Establishing a unified analysis model reveals the key parameters in the structural analysis of suspension bridges, enabling an easier and faster analysis of multi-tower self-anchored suspension bridges.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810492
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine