0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Understanding Penetration Attenuation of Permeable Concrete: A Hybrid Artificial Intelligence Technique Based on Particle Swarm Optimization

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1173
DOI: 10.3390/buildings14041173
Abstract:

Permeable concrete is a type of porous concrete with the special function of water permeability, but the permeability of permeable concrete will decrease gradually due to the clogging behavior arising from the surrounding environment. To reliably characterize the clogging behavior of permeable concrete, particle swarm optimization (PSO) and random forest (RF) hybrid artificial intelligence techniques were developed in this study to predict the permeability coefficient of permeable concrete and optimize the aggregate mix ratio of permeable concrete. Firstly, a reliable database was collected and established to characterize the input and output variables for the machine learning. Then, PSO and 10-fold cross-validation were used to optimize the hyperparameters of the RF model using the training and testing datasets. Finally, the accuracy of the developed model was verified by comparing the predicted value with the actual value of the permeability coefficients (R = 0.978 and RMSE = 1.3638 for the training dataset; R = 0.9734 and RMSE = 2.3246 for the testing dataset). The proposed model can provide reliable predictions of the clogging behavior that permeable concrete may face and the trend of its development.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773451
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine