0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Uncovering the Efficiency and Performance of Ground-Source Heat Pumps in Cold Regions: A Case Study of a Public Building in Northern China

Author(s):

ORCID




ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 13
Page(s): 1564
DOI: 10.3390/buildings13061564
Abstract:

In cold regions, due o the impact of climatic conditions, the heat load in winter and the cooling load in summer are unbalanced. In the long-term operation of the ground-source heat pump (GSHP), the soil heat imbalance phenomenon has still not been successfully solved. Therefore, this study took the GSHP of a public building in the cold area of northern China as the research object. Based on the unit performance data of the system over 8 years and the measured data of the soil temperature field, the long-term operation efficiency of the GSHP in the cold region and the variation law of the soil temperature field were explored. In order to further study the problem of soil heat imbalance, the effect of heat exchange hole groups at different intervals on the underground soil thermal environment after 30 years of operation in the system was simulated, and the optimization scheme of heat exchange hole spacing was proposed. The research results support the improvement and optimization of GSHP design and construction, and have important practical significance for the popularization of GSHPs in cold regions.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10732828
  • Published on:
    04/08/2023
  • Last updated on:
    07/08/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine