Ultra-High-Performance Alkali-Activated Concrete: Effect of Waste Crumb Rubber Aggregate Proportions on Tensile and Flexural Properties
Author(s): |
Lei Li
Zhongmin Chen Weixian Che Cheng Cheng Yiwu Chen Dehui Li Lianghua Liu Yongchang Guo |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 27 March 2024, n. 4, v. 14 |
Page(s): | 1088 |
DOI: | 10.3390/buildings14041088 |
Abstract: |
The declining availability of natural sand resources and the significant carbon footprint associated with the extensive use of cement are posing severe limitations on the advancement and application of ultra-high-performance concrete (UHPC). In this study, waste tyre-derived recycled crumb rubber particles (CR) were employed to replace quartz sand, and an alkali-activated cementitious material was used to produce waste tyre-alkali-activated UHPC (T-UHPAC). The influence of different CR replacement ratios (0%, 5%, 20%, 35%, 50%) on the tensile and flexural performance of T-UHPAC was investigated, and a predictive model for the stress–strain response considering the CR replacement ratio was established. An optimization method for improving the tensile and flexural performance of T-UHPAC was proposed. The results indicate that the effect of rough-surfaced CR on the interfacial properties of concrete differs from that of smooth quartz sand. A CR replacement ratio exceeding 35% led to a reduction in both the tensile and flexural strengths of UHPAC, while a replacement ratio at or below 20% resulted in a superior tensile and flexural performance of T-UHPAC. The established predictive model for tensile performance accurately forecasts the stress–strain behaviour of T-UHPAC under varying CR replacement ratios, with the accuracy improving as the CR replacement ratio increases. By utilizing CR to replace quartz sand in proportions not exceeding 20%, the production of low-carbon UHPC with exceptional comprehensive mechanical properties is achievable. Moreover, the development of T-UHPAC through the comprehensive utilization of waste tyres presents a promising and innovative approach for the low-carbon and cost-effective production of UHPC, thereby facilitating the sustainable development of natural resources. This research represents a significant step towards the widespread adoption and application of UHPC and thus holds substantial importance. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
13.37 MB
- About this
data sheet - Reference-ID
10773361 - Published on:
29/04/2024 - Last updated on:
05/06/2024