Tuned-Mass-Damper-Inerter Performance Evaluation and Optimal Design for Transmission Line under Harmonic Excitation
Author(s): |
Xinpeng Liu
Yingwen Yang Yi Sun Yongli Zhong Lei Zhou Siyuan Li Chaoyue Wu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 11 April 2022, n. 4, v. 12 |
Page(s): | 435 |
DOI: | 10.3390/buildings12040435 |
Abstract: |
To investigate vibration control and optimal design of transmission lines with tuned-mass-damper-inerter (TMDI), the motion equation of transmission lines with TMDI is established in the paper, and the closed-form solutions of the response spectrum of transmission line displacement are derived by the frequency domain analysis method. The design parameters of TMDI are optimized by fixed-point theory, and the vibration control performance of TMDI is discussed. The results show that the increase in apparent mass ratio has a positive effect on the vibration control performance of TMDI; the vibration control performance is greatly affected by frequency ratio and limited by damping ratio; the increase in both mass ratio and apparent mass ratio reduces the peak values of the displacement response spectra of transmission line with TMDI; however, blindly increasing the apparent mass and mass ratio (β > 0.2 or μ > 0.4) has a limited effect on improving the vibration control performance of TMDI; compared with conventional TMD, the peak values of the controlled displacement response spectrum of the transmission line with TMDI can be reduced by about 12%, and TMDI has a better vibration suppression effect on the transmission lines. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.74 MB
- About this
data sheet - Reference-ID
10664423 - Published on:
09/05/2022 - Last updated on:
01/06/2022