0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Triangular Shell Element Based on Higher-order Strains for the Analysis of Static and Free Vibration

Author(s):




Medium: journal article
Language(s): English
Published in: Civil Engineering Journal, , n. 10, v. 8
Page(s): 2096-2109
DOI: 10.28991/cej-2022-08-10-06
Abstract:

This research paper proposes a new triangular cylindrical finite element for static and free vibration analysis of cylindrical structures. The formulation of the proposed element is based on deep shell theory and uses assumed strain functions instead of displacement functions. The assumed strain functions satisfy the compatibility equations. This finite element possesses only the five necessary degrees of freedom for each of the three corner nodes. The element's displacement field, which contains higher-order terms, satisfies the requirement of rigid-body displacement. The element's performance is evaluated using various numerical static and free vibration tests for cylindrical shell problems, including an analysis of the effect of shell openings on natural frequencies. The results of the developed element are evaluated in comparison with published analytical and numerical solutions. The new cylindrical element's formulation is straightforward. Compared to the degenerate nine-node shell element and other elements, the results of the present element have shown excellent accuracy and efficiency in predicting static and free vibration of curved structures. This element only requires the use of very coarse meshes to converge. In addition, the triangular shape of this element is more advantageous than the quadrilateral shape when the geometric domain of the structure is deformed or complicated. 

Copyright: © 2022 Hamida Sekkour, Lamine Belounar, Abderahim Belounar, Faiçal Boussem, Lahcene Fortas
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10702860
  • Published on:
    10/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine