0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Transient dynamics of the field induced force in the isotropic magnetorheological elastomer

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 6, v. 32
Page(s): 065016
DOI: 10.1088/1361-665x/acd0e5
Abstract:

The transition dynamics in silicon rubber based isotropic magnetorheological (MR) elastomers in terms of the normal force induced by an external homogeneous magnetic field is experimentally addressed. The primary goal was to evaluate dynamic performances of the MR elastic isotropic composite using a transparently presented measuring system with known characteristics in contrast to few previous studies on the topic. It was found that an increase in the magnetic field leads to an increase in the induced force and a decrease in the response time of the MR elastomer. At the same time, both the use of coarse particles as magnetic filler and a significant reduction in the stiffness of the polymer matrix reduce the response time of the MR elastomer under study. The analysis carried out takes into account the dynamics of the electromagnetic coil and the eddy currents induced in the magnet circuit. The shortest response times obtained for various MR elastomer samples are in the range of 27–72 ms for the maximal used magnetic field with an induction of 230 mT. These times correspond to the fastest previously reported ones for MR elastomers and MR elastomer based systems. In addition, the obtained results indicate the presence of different mechanisms responsible for the measured magnetodeformational effect observed in MR elastomers.

Copyright: © 2023 M Kubík, D Borin, S Odenbach
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10724768
  • Published on:
    30/05/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine