Tower Crane Layout Planning: Multi-Optimal Solutions Algorithm
Author(s): |
Xiaokang Huang
Huazhou Chen Rui Wang Heng Wang Shuai Li Pengfei Zhang Zhen Yang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 18 December 2024, n. 12, v. 14 |
Page(s): | 3760 |
DOI: | 10.3390/buildings14123760 |
Abstract: |
Effective tower crane layout planning is essential for the success of construction projects. Traditional optimization algorithms, which often provide a single optimal solution, may not always reveal the global optimum, leaving room for doubt. This paper introduces the competitor algorithm, a novel multi-optimal solution approach inspired by the competitive learning paradigm within classroom settings. This algorithm is designed to provide users with a diverse set of competitive solutions, while avoiding falling into local optima. This strategic diversification ensures that users are equipped with a comprehensive range of options, empowering them to make confident, informed decisions. Furthermore, we have streamlined the positioning range for tower cranes, transitioning from a two-dimensional plane to a one-dimensional segmented line, thus eliminating the need to explore extensive, non-competitive regions. The competitor algorithm’s performance was validated through practical application, showcasing both its stability and optimization prowess, thereby confirming its reliable utility in real-world scenarios. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.48 MB
- About this
data sheet - Reference-ID
10810168 - Published on:
17/01/2025 - Last updated on:
25/01/2025