0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Toward Cost-Effective Timber Shell Structures through the Integration of Computational Design, Digital Fabrication, and Mechanical Integral ‘Half-Lap’ Joints

Author(s): ORCID

ORCID


ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1735
DOI: 10.3390/buildings14061735
Abstract:

In a global context, where the construction industry is a major source of CO₂ emissions and resource use, is dependent on concrete and its risks, and lags behind in digitalization, a clear need arises to direct architecture towards more practical, efficient, and sustainable practices. This research introduces an alternative technique for building timber space structures, aiming to expand its applications in areas with limited access to advanced technologies such as CNCs with more than five axes and industrial robotic arms. This involves reconfiguring economic and ecological constraints to maximize the structural and architectural advantages of these systems. The method develops a parametric tool that integrates computational design and manufacturing based on two-axis laser cutting for shells with segmented hexagonal plywood plates. It uses a modified ‘half-lap joint’ mechanical joint, also made of plywood and without additional fasteners, ensuring a precise and robust connection. The results demonstrate the compatibility of the geometry with two-axis CNC machines, which simplifies manufacturing and reduces the cuts required, thus increasing economic efficiency. The prototype, with a span of 1.5 m and composed of 63 plywood panels and 163 connectors, each 6 mm thick, supported a point load of 0.8 kN with a maximum displacement of 5 mm, weighing 15.1 kg. Assembly and disassembly, carried out by two students, took 5 h and 1.45 h, respectively, highlighting the practicality and accessibility of the method. In conclusion, the technique for building timber shells based on two-axis CNC is feasible and effective, proven by practical experimentation and finite element analysis.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787541
  • Published on:
    20/06/2024
  • Last updated on:
    25/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine