Topology Optimization of Stiffened Steel Plate Shear Wall Based on the Bidirectional Progressive Structural Optimization Method
Author(s): |
Jianian He
Xuhao Li Shizhe Chen Huasheng Xian |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 26 February 2023, n. 3, v. 13 |
Page(s): | 831 |
DOI: | 10.3390/buildings13030831 |
Abstract: |
Many studies on structural topology optimization of steel plate shear walls have been conducted. However, research on topology optimization using the bidirectional evolutionary structural optimization method is limited. Accordingly, this study optimized the topology of the stiffening effect of steel plate shear walls (SPSWs) based on this method. A finite element model of the SPSW was established using Abaqus software through the “sandwich” modeling method. An optimization region was expanded into two optimization regions. As the optimization targets, SPSWs with different aspect ratios were selected. Elastoplastic optimization of a single-layer SPSW was performed through the horizontal displacement cyclic loading, and the distribution law of the stiffening effect was obtained. The stiffeners on the SPSW were arranged according to the SPSW-A075 scheme. Monotonic and reciprocating loading simulation tests were performed on the unstiffened SPSW and common transverse and longitudinal stiffeners to analyze their mechanical properties. The results show that the optimized layout of the stiffened SPSW demonstrated better seismic performance and energy dissipation capacity. The buckling bearing capacity increased by 2.17–2.61 times, and the stiffness and initial stiffness improved significantly. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.67 MB
- About this
data sheet - Reference-ID
10728325 - Published on:
30/05/2023 - Last updated on:
01/06/2023