0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Time-dependent Behaviour Analysis of Long-span Concrete Arch Bridge

Author(s):



Medium: journal article
Language(s): English
Published in: The Baltic Journal of Road and Bridge Engineering, , n. 2, v. 14
Page(s): 227-248
DOI: 10.7250/bjrbe.2019-14.441
Abstract:

This paper continues the previous study on clarifying the time-dependent behaviour of Beipanjiang Bridge ‒ a reinforced concrete arch bridge with concrete-filled steel tubular stiffened skeleton. The obtained prediction models and the Finite Element Models were used to simulate the long-term behaviour and stress redistribution of the concrete arch bridge. Three-dimensional beam elements simulated the stiffened skeleton and surrounding concrete. Then, a parameters study was carried out to analyse the time-dependent behaviour of the arch bridge influenced by different concrete creep and shrinkage models. The simulation results demonstrate that concrete creep and shrinkage have a significant influence on the time-dependent behaviour of the concrete arch bridge. After the bridge completion, the Comite Euro-International du Beton mean deviation of displacements obtained by 1990 CEBFIP Model Code: Design Code model and fib Model Code for Concrete Structures 2010 model are 3.4%, 31.9% larger than the results predicted by the modified fib Model Code for Concrete Structures 2010 model. The stresses between the steel and the concrete redistribute with time because of the concrete long-term effect. The steel will yield if the fib Model Code for Concrete Structures 2010 model is used in the analysis. The stresses in a different part of the surrounding concrete are non-uniformly distributed.

Copyright: © 2019 Yongbao Wang, Renda Zhao, Yi Jia, Ping Liao
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10315216
  • Published on:
    28/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine