0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Three-Dimensional Numerical Modeling of Large-Scale Free Surface Flows with Heat and Contaminant Transfer in Reservoirs

Author(s): ORCID




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-17
DOI: 10.1155/2021/9336868
Abstract:

The temperature distribution and pollutant distribution in large reservoirs have always been a hotspot in the field of hydraulics and environmentology, and the three-dimensional numerical modeling that can effectively simulate the interactions between the temperature fields, concentration fields, and flow fields needs to be proposed. The double-diffusive convection lattice Boltzmann method is coupled with a single-phase volume of fluid model for simulating heat and contaminant transfer in large-scale free surface flows. The coupling model is used to simulate the double-diffusive natural convection in a cubic cavity and the temperature distribution of a model reservoir. The mechanism of convection-diffusion, gravity sinking flow, and the complexity of the temperature and the pollutant redistribution process are analyzed. Good agreements between the simulated results and the reference data validate the accuracy and effectiveness of the proposed coupling model in studying free surface flows with heat and contaminant transfer. At last, the temporal and spatial variations of flow state, water temperature stratification, and pollutant transport in the up-reservoir of a pumped-storage power station are simulated and analyzed by the proposed model. The obtained variations of the flow field agree well with the observations in the physical model test and in practical engineering. In addition, the simulated temperature field and concentration field are also consistent with the general rules, which demonstrates the feasibility of the coupling model in simulating temperature and pollutant distribution problems in realistic reservoirs and shows its good prospects in engineering application.

Copyright: © Wei Diao et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10630612
  • Published on:
    01/10/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine