0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Three-Dimensional Analysis of Complex Rock Slope Stability Affected by Fault and Weak Layer Based on FESRM

Author(s):



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-14
DOI: 10.1155/2019/6380815
Abstract:

Slope stability analysis is the most important problem in slope engineering design and construction. Open-pit slope often spans several strata, many of which are relatively weak. There may be faults and weak layers across the whole rock. It is very necessary to study the instability mechanism and stability analysis of multistratigraphic slopes with faults and weak layers. In this paper, taking a complex three-dimensional slope with fault and weak layer as the research object, the evolution laws of the stress field and damage zone of the slope are analyzed by using the finite element strength reduction method. The results show that the fault and weak layer have different degrees of effect on the slope stability. The fault causes stress concentration and damage to nearby rock mass, and the weak layer causes stress concentration on the slope above it and forms a dangerous slip zone. Then the effect of the fault and weak layer on slope stability is discussed. Because the effect of horizontal structural plane on slope stability is greater than that of the vertical structural plane, the effect of weak layer on slope stability is greater than that of the fault in the slope. The research results can provide a theoretical guidance for the study of slope stability in practical engineering.

Copyright: © 2019 Yang Li et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10400170
  • Published on:
    12/12/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine