0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Thermal properties of cement mortar with different mix proportions

Author(s):




Medium: journal article
Language(s): Spanish
Published in: Materiales de Construccion, , n. 339, v. 70
Page(s): 224
DOI: 10.3989/mc.2020.09219
Abstract:

The energy required for the heating and cooling of buildings is strongly dependant on the thermal properties of the construction material. Cement mortar is a common construction material that is widely used in buildings. The main aim of this study is to assess the thermal properties of cement mortar in terms of its ther­mal conductivity, heat capacity and thermal diffusivity in a wide range of grades (cement: sand ratio between 1:2 and 1:8). As there is insufficient information to predict the thermal conductivity and diffusivity of a cement mortar from its physical and mechanical properties, the relationships between thermal conductivity and diffu­sivity and density, compressive strength, water absorption and porosity are also discussed. Our results indicate that, for a cement mortar with a 28-day compressive strength in the range of 6–60 MPa, thermal conductivity, specific heat and thermal diffusivity are in the range of 1.5–2.7 W/(m.K), 0.87–1.04 kJ/kg.K and 0.89–1.26 (x10-6 m²/s), respectively. The scanning electron microscope (SEM) images showed that pore size varied from 18 μm to 946 μm for samples with different cement-to-sand ratios. The porosity of cement mortar has a signifi­cant effect on its thermal and physical properties. For this reason, thermal conductivity and thermal diffusivity was greater in cement mortar samples with a higher density and compressive strength.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3989/mc.2020.09219.
  • About this
    data sheet
  • Reference-ID
    10516741
  • Published on:
    10/12/2020
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine