0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Thermal Performance of Insulated Constructions—Experimental Studies

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 9
Page(s): 49
DOI: 10.3390/buildings9020049
Abstract:

Buildings that are designed to meet high-energy performance requirements, e.g., passive houses, require well-insulated building envelopes, with increased insulation thicknesses for roof, wall and floor structures. We investigate whether there are differences in the efficiency of thermal insulation materials at different moisture levels in the insulation and if there is a larger or smaller risk of natural convection in wood-fibre based insulation than in mineral wool. The work has mainly been performed by use of laboratory measurements included permeability properties and full-scale measurements of thermal transmittance of mineral wool and wood-fibre insulated constructions. In addition, calculations have been used to calculate resulting effects on the thermal performance of constructions. Results showed that the thermal conductivity was unaffected by moisture in the hygroscopic range. The air permeability was found to be approximately 50% higher for the wood-fibre insulation compared to mineral wool insulation. Measurements showed that the largest U-values and Nusselt numbers were found for the wall configuration. Calculation of the U-value of walls showed that in order to achieve the same U-value for the wood-fibre insulated wall as the mineral wool, it is necessary to add 20 mm insulation to the 250 mm wall and approximately 30 mm for the 400 mm wall.

Copyright: © 2019 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10324940
  • Published on:
    22/07/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine