Thermal Environment and Thermal Comfort in University Classrooms during the Heating Season
Author(s): |
Jiuhong Zhang
Peiyue Li Mingxiao Ma |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 5 July 2022, n. 7, v. 12 |
Page(s): | 912 |
DOI: | 10.3390/buildings12070912 |
Abstract: |
In recent years, there has been increasing concern about the effects of indoor thermal environments on human physical and mental health. This paper aimed to study the current status of the thermal environment and thermal comfort in the classrooms of Northeastern University during the heating season. The indoor thermal environment was analyzed with the use of field measurements, a subjective questionnaire, regression statistics, and the entropy weight method. The results show that personnel population density is an important factor affecting the temperature and relative humidity variations in classrooms. The results also show that the temperature and relative humidity in a lecture state are respectively 4.2 °C and 11.4% higher than those in an idle state. In addition, in university classrooms in Shenyang, the actual thermal neutral temperature is 2.5 °C lower than the predicted value of the Predicted Mean Vote. It was found that increasing indoor relative humidity can effectively improve the overall thermal comfort of subjects. Furthermore, the temperature preference of women was higher than that of men. Therefore, when setting the initial heating temperature, the personnel population density and sufficient indoor relative humidity have been identified as the key factors for improving the thermal environment of the classroom. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
7.07 MB
- About this
data sheet - Reference-ID
10688408 - Published on:
13/08/2022 - Last updated on:
10/11/2022