Thermal Buckling and Postbuckling Analysis of Functionally Graded Concrete Slabs with Initial Imperfections
Author(s): |
Huanqing Zhang
Zheng Zhang Helong Wu Sritawat Kitipornchai Guozhong Chai Jie Yang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | International Journal of Structural Stability and Dynamics, October 2018, n. 11, v. 18 |
Page(s): | 1850142 |
DOI: | 10.1142/s0219455418501420 |
Abstract: |
This paper proposes a novel functionally graded (FG) concrete slab and investigates its thermal buckling and postbuckling performance using the finite-element (FE) method. The concrete slab consists of three homogeneous thick layers — a fiber-reinforced concrete layer, a geopolymer concrete layer, and a plain Portland cement (PPC) layer — with a thin FG layer between the thick layers. The mechanical properties of the thin FG layers are exponentially graded across the thickness direction. The effects of initial imperfection, the self-weight of the slab, and the friction between the slab and rigid foundation are considered in the analysis. The FE model is validated against the results reported in the literature. A comprehensive parametric study is conducted to examine the effects of the thickness and volume fraction index of the FG layer, initial imperfection, self-weight, friction, and slab slenderness ratio on the thermal buckling and postbuckling behaviors of the concrete slab. The numerical results demonstrate that the proposed FG slab exhibits remarkably better buckling and postbuckling resistance than a conventional PPC concrete slab and that the influences of both self-weight and friction are important and cannot be neglected. |
- About this
data sheet - Reference-ID
10352141 - Published on:
10/08/2019 - Last updated on:
10/08/2019