Theoretical Model for the Stress–Strain Curve of CNT-Reinforced Concrete under Uniaxial Compression
Author(s): |
Peng Zhu
Qihao Jia Zhuoxuan Li Yuching Wu Zhongguo John Ma |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 February 2024, n. 2, v. 14 |
Page(s): | 418 |
DOI: | 10.3390/buildings14020418 |
Abstract: |
The incorporation of carbon nanotubes (CNTs) can enhance the mechanical properties of concrete. The stress–strain curves of CNT-reinforced concrete under uniaxial compression are investigated through an experimental program with different CNT and steel fiber proportions considered. The test results demonstrate that CNTs can increase both peak stress and peak strain, and steel fibers can further enhance the effect of CNTs. Additionally, steel fibers can effectively enhance both the strength and ductility. Theoretical models for the peak strain, initial elastic modulus, toughness index and relative absorbed energy are established. A theoretical model for the uniaxial compressive constitutive relationship of CNT-reinforced concrete considering CNT and steel fiber content is developed. Finite element (FE) modelling is developed to simulate the axial compression behavior of CNT-reinforced concrete. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
19.3 MB
- About this
data sheet - Reference-ID
10760428 - Published on:
15/03/2024 - Last updated on:
25/04/2024