Theoretical Analysis of the Plastic Property for Equal Angle Sections Subjected to Axial Force and Biaxial Bending
Author(s): |
Yun Sun
Da Song Qi Cai Yangbing Liu Shuxuan Sun Yuting Yang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 2 July 2024, n. 7, v. 14 |
Page(s): | 2153 |
DOI: | 10.3390/buildings14072153 |
Abstract: |
To fully harness the design development potential of plastic angle sections, this study employs a theoretical analysis approach to examine the plastic behavior of equal angle sections subjected to axial force and biaxial bending. Based on the simplified angle section results, the full plasticity correlation equations were derived. Subsequently, section shape coefficients were computed. Finally, a methodology for calculating the plastic development coefficients of angle sections was explored. The findings indicate that the full plasticity correlation equations lack the necessary safety margins in designs. Notably, the angle sections possess a greater plastic development capacity along the weak axis compared with the strong axis. It is advisable, for both regular-size and large-size angle sections, to consistently adopt the plastic development coefficients in designs as follows: γu = 1.05 for the strong axis and γv = 1.15 for the weak axis, thereby addressing the shortcomings of the specification in design. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.23 MB
- About this
data sheet - Reference-ID
10795547 - Published on:
01/09/2024 - Last updated on:
01/09/2024