0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Theoretical Analysis of Rockfall Impacts on the Soil Cushion Layer of Protective Structures

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-18
DOI: 10.1155/2018/9324956
Abstract:

During the Wenchuan Earthquake, with a magnitude of 5.12, collapses and rockfall hazards persisted for a long time after the initial investigations carried out by research fellow S. M. He and his team at the scene of the disaster in October 2008. It is possible that additional incidents of rockfalls in large quantities may continue in the same areas over the next ten to fifteen years. Furthermore, in the vast mountainous region of western China, the topographic relief is evident, and earthquakes occur frequently. Therefore, it is difficult to effectively defend against rockfall hazards. When designing protective structures, the key issue is the analysis of the mechanical response mechanism of the soil cushion layer of the upper cushion when subjected to the impact of rockfall. As such, a theoretical method was used to perform such an analysis. The cavity expansion and energy conservation model were adopted. Analytical solutions for the impact force and penetration depth were then derived. Furthermore, the impact force and penetration depth of rockfall were studied with the LS-DYNA software to obtain values for the impact forces and the penetration depth. Finally, the reliability of the theoretical method was evaluated using the cavity expansion, energy conservation, numerical simulation, Hertz, Japanese, Swiss, Australian, B. S. Guan, tunnel manual, and subgrade methods based on an engineering model. The results show that the cavity expansion and the energy conservation methods yielded consistent results. Meanwhile, the cavity expansion and the energy conservation methods also yielded consistent results with the numerical simulation, Japanese (obtained by laboratory experiment), Swiss (obtained by laboratory experiment), and Australian (obtained by field experiment) methods. The relevant methods and conclusions shall therefore be applied to the design of rockfall protection structure in future investigations.

Copyright: © 2018 Xing Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10257476
  • Published on:
    29/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine