Test and Evaluation of the Flexural Properties of Reinforced Concrete Beams with 100% Recycled Coarse Aggregate and Manufactured Sand
Author(s): |
Changyong Li
Tongsheng Liu Hao Fu Xiaoyan Zhang Yabin Yang Shunbo Zhao |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2021, n. 9, v. 11 |
Page(s): | 420 |
DOI: | 10.3390/buildings11090420 |
Abstract: |
Although studies have been performed on the recycled aggregate made of waste concrete for the production of new concrete, the new concrete with 100% recycled coarse aggregate and manufactured sand (abbreviated as RAMC) still needs to be researched for structural applications. In this paper, an experimental study was performed on seven groups, including fourteen reinforced RAMC beams under the simply supported four-point loading test, considering the factors of the strength of RAMC and the reinforcement ratio of longitudinal tensile rebars. Based on the test results, the cracking resistance, the bearing capacity, the crack width, the flexural stiffness and the mid-span deflection of reinforced RAMC beams in bending are discussed and examined by using the formulas of conventional reinforced concrete beams. Results show that an obvious effect of reinforcement ratio was present, while less so was that of the strength of RAMC. With the comparison of predicted values by the formulas of conventional reinforced concrete beams, the reinforced RAMC beams decreased cracking resistance by about 20%, increased crack width by about 15% and increased mid-span deflection by about 10%, although the same bearing capacity can be reached. The results directly relate to the lower tensile strength of RAMC which should be further improved. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.5 MB
- About this
data sheet - Reference-ID
10631212 - Published on:
01/10/2021 - Last updated on:
05/10/2021