0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Temperature gradient for improving the output non-linearity in shape memory alloy actuators

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 8, v. 33
Page(s): 085046
DOI: 10.1088/1361-665x/ad5e4e
Abstract:

The non-linearity of shape memory alloy’s (SMA) input vs. output relationship has been a significant barrier to their broader application for actuators. In this article, we introduce a novel activation approach with the objective of improving the output nonlinearity in SMA actuators by using a liquid temperature gradient for activation. This gradient, with a narrow inflection point, selectively activates and deactivates different portions of the SMA, allowing control of the overall actuator’s output by adjusting the inflection point’s position. Two prototypes with the proposed concept were constructed and tested for force and displacement output. Their inner shape design facilitates the creation of a temperature gradient, whose inflection point is adjusted by varying the mix ratio of the inlet of hot and cold water. The performance of the prototypes was evaluated, including their ability to generate a temperature gradient, output linearity, activation dead time and time constant, and compatibility with a linear controller. The output linearity, activation dead time, and time constant were also compared with traditional wet activation. Our findings suggest that this technique significantly enhances the performance and predictability of SMA-based actuators and is compatible with PID controllers without additional feedforward or modeling techniques, offering a practical solution to a long-standing challenge in the field.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1361-665x/ad5e4e.
  • About this
    data sheet
  • Reference-ID
    10790739
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine