0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Temperature Control Technology for Construction of Jinsha River Bridge

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/3452167
Abstract:

The key problem of mass concrete temperature control is to effectively control the maximum temperature inside concrete, the temperature difference between inside and outside concrete, and the temperature difference between surface and environment. The size of the main tower cap of No. 3 Jinsha River Bridge is 37 m × 23.5 m × 5.5 m, and the cubic volume of concrete reaches 4782.3 m³, which is poured in two times. In order to ensure construction quality of mass concrete structure, prevent the large mass concrete temperature stress, through the numerical simulation of the temperature control and optimization scheme, by optimizing the mixture ratio design, reducing the temperature of concrete pouring into the mold, cooling water cycling, insulation keeping in good health and a series of measures to effectively achieve the control goal, and eliminating the temperature cracks. The measured data show that the maximum temperature inside concrete, the temperature difference between inside and outside, and the temperature difference between surface and environment are qualified, but the temperature difference control of cooling water inlet and outlet has hysteresis effect, and the temperature difference between inlet and outlet will be greater than 10°C, which should be noticed.

Copyright: © Hui-Wu Jin et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10638200
  • Published on:
    30/11/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine