0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

System Reliability Analysis of Concrete Arch Dams Considering Foundation Rock Wedges Movement: A Discussion on the Limit Equilibrium Method

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 10, v. 9
Page(s): 176
DOI: 10.3390/infrastructures9100176
Abstract:

In this paper, a discussion on the applicability and limitations of the limit equilibrium method is presented. In this manner, the reliability of a concrete arch dam-foundation system under static loading is evaluated by considering a set of potentially moveable rock wedges in the foundation. The safety of the system is assessed utilizing a quasi-analytical method, which employs the limit equilibrium method and numerical analysis to calculate the sliding safety factors and the dam trust forces, respectively. The reliability is evaluated using the Latin Hypercube Sampling method. Random variables in the system are the friction angle, cohesion, and the Grout Curtain Efficiency Coefficient. In the end, the influence of two parametric variables of discontinuities, elastic slip and rock mass deformability modulus, on the rock wedges’ sliding safety factor is evaluated by comparing the results of the quasi-analytical method with the purely numerical method. The results show that in the case of complicated geotechnical conditions, the limit equilibrium method may not reflect real-world failure scenarios.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10806430
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine