0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Synthesis of Pincer type carbene and their Ag(I)-NHC complexes, and their Antimicrobial activities

Author(s):


Medium: journal article
Language(s): English
Published in: Journal of Sustainable Construction Materials and Technologies, , n. 2, v. 7
Page(s): 53-61
DOI: 10.47481/jscmt.1117139
Abstract:

In this study, theophylline (1) compounds were synthesized with addition of 2-bromoetha-nol, 2-bromoacetamide and methyl-2-bromoacetate to attain symmetric connections to NHCs (2a–c). New complexes containing the symmetric N-heterocyclic carbene (NHC) ligands were synthesized using azolium salts in dimethyl formamide (DMF). After the NHC predecessor compounds reacted with Ag2O, Ag(I)-NHC complexes were synthesized in the following: 7,9-di-(2-hydroxyethyl)-8,9-dihydro-1,3-dimethyl-1H-purine-2,6(3H,7H)-dionedium silver(I)bromide (3a), 7,9-di(acetamide)-8,9-dihydro-1,3-dimethyl-1H-purine-2,6(3H,7H)-di-ondium silver(I)bromide (3b) and 7,9-di(methylacetate)-8,9-dihydro-1,3-dimethyl-1H-pu-rine-2,6(3H,7H)-diondiumsilver(I)bromide (3c). Both synthesized NHC predecessors (2a-c) and Ag(I)-NHC complexes (3a-c) were described by FTIR, 1H-NMR, 13C-NMR, liquid and solid-state conductivity values, TGA analysis, melting point analysis and XRD spectroscopy. In-vitro antibacterial activities of NHC-predecessors and Ag(I)-NHC complexes were tested against gram-positive bacteria (Staphylococcus Aureus and Bacillus Cereus), gram-negative bacteria (Escherichia Coli and Listeria Monocytogenes), and fungus (Candida Albicans) in Tryptic Soy Broth method. Ag(I)-NHC complexes showed higher antibacterial activity than pure NHC predecessors. The lowest microbial inhibition concentration (MIC) value of compound 3a was obtained as 11.56 μg/ml for Escherichia Coli and 11.52 μg/ml for Staphylococcus Aureus. All tested complexes displayed antimicrobial activity with different results.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.47481/jscmt.1117139.
  • About this
    data sheet
  • Reference-ID
    10689353
  • Published on:
    13/08/2022
  • Last updated on:
    13/08/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine