0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Synergistic Effects of Roadside Trees and Spatial Geometry on Thermal Environment in Urban Streets: A Case Study in Tropical, Medium-Sized City, Taiwan

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 13
Page(s): 2092
DOI: 10.3390/buildings13082092
Abstract:

With the global warming effect and the rapid growth of global urbanization, the concept of urban heat islands (UHIs) has become one of the most important environmental issues in the world. Early studies on UHIs mostly focused on highly developed, large cities and found that urban heat island intensity (UHII) can be as high as 4~7 °C. In recent years, it has also been found that the UHI of medium-sized cities can also reach 4–6 °C. Previous studies have also found that planting, street orientation, and aspect ratio individually have a great impact on the thermal environment of streets, but there are not many studies that comprehensively discuss the synergistic effects of these factors. Therefore, this study takes a tropical, medium-sized city, Chiayi City, as a case study to use the ENVI-met numerical simulation tool to comprehensively compare and analyze the influence of the trees and geometric characteristics of streets on the microclimate and comfort in the streets. As a result, in a tropical, with sea winds (west winds), medium-sized city, by comparison of 12 street schemes with different roadside tree situations (planting or not), orientations (E–W, N–S), and aspect ratios (0.3, 0.7, 1.0), the improvement benefits and possible mechanisms of air temperature, wind speed, MRT, PET, SET, absolute humidity, etc. at the pedestrian street level (H = 1.4 m) were obtained and show that the cooling effect of trees was deeply affected by the street orientation and geometry. An analysis of changes at different heights was also obtained. Finally, design strategy suggestions, such as the street orientation, should be prioritized to be parallel to the prevailing wind; modifying tree shapes or building forms on streets perpendicular to the prevailing wind for creating cool and comfortable streets in future tropical, medium-sized cities were proposed.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

Geographic Locations

  • About this
    data sheet
  • Reference-ID
    10737468
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine