0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Subsidence Prediction of Overburden Strata and Surface Based on the Voussoir Beam Structure Theory

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-13
DOI: 10.1155/2018/2606108
Abstract:

The hard and stiff strata (key strata) bear the overburden load in the form of a voussoir beam structure (VBS) after break. The VBS affects both the surface subsidence and the stope underground pressure. Therefore, the reasonable method to predict the surface subsidence is based on the whole subsidence formulae of the VBS. This study first establishes the subsidence formulae of the VBS analytically. The influence of the block length on the subsidence curve and the VBS level on the zero-subsidence range are then analyzed based on the subsidence formulae of the VBS. The results show the half-subsidence curve of the VBS is an S-shaped curve. The block length hardly affects the S-shaped subsidence curve determined by the width of the undercompacted zone. Furthermore, a greater undercompacted zone width corresponds to a greater offset distance of the inflection point. The higher the VBS level, the farther the zero-subsidence range, and the flatter the subsidence curve. The subsidence of the highest VBS can approximately represent the surface subsidence when the topsoil is thin enough.

Copyright: © 2018 Changchun He et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176619
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine