0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the System Reliability of Steel-Concrete Composite Beam Cable-stayed Bridge

Author(s):



Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 10
Page(s): 418-432
DOI: 10.2174/1874149501609010194
Abstract:

Steel-concrete composite beam cable-stayed bridge is a complicated system consisting of a composite beam, tower, and stayed cables. And the composite beam is composed of a steel beam, bridge deck and connectors, which has a different mechanical behavior from the general beam structure. In a word, the steel-concrete composite beam cable-stayed bridge is characterized by specific mechanical behavior and has many influencing factors. Thus, its safety analysis often cannot be easily implemented. This paper aims to study the component reliability of the steel-concrete composite beam based on the stochastic finite element method (SFEM) and the recognition of main failure modes in the system reliability of the cable-stayed bridge. For the component reliability of the steel-concrete composite beam, a nonlinear element model with 10 degrees of freedom (DOF) is adopted, which can consider the particular longitudinal slip effect between the steel and concrete. And the direct differential method (DDM) is used to deduce the response gradient of the element model. Meanwhile, the tower and the composite beam are considered as beam-column members to establish their limit state functions in the form of interaction equations. For the recognition of main failure modes in the system reliability, this paper proposes the concept of uniformity of the reliability index and the refinement strategy to improve theβ-unzipping method, which can identify the main failure modes or neglect the unnecessary non-main failure modes. Finally, a certain steel-concrete composite beam cable-stayed bridge is used to verify the effectiveness of the proposed method.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.2174/1874149501609010194.
  • About this
    data sheet
  • Reference-ID
    10175376
  • Published on:
    30/12/2018
  • Last updated on:
    03/08/2019