0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Stability of Unbalanced Rotation of Large-Tonnage T-Shaped Rigid Frame Bridges

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 14
Page(s): 3927
DOI: 10.3390/buildings14123927
Abstract:

In the design of cantilever method bridge anti-overturning structures, the appropriate gap between the supporting foot and the lower rotating table is a crucial factor. It affects the distribution of the upper load and the friction force of the rotating structure, playing a key role in stability control. Currently, a reasonably defined range for this gap based on engineering practice has not been established. This study, set against the backdrop of practical engineering for large-tonnage rotational bridges, analyzes potential overturning instability forms during rotation. It provides a detailed examination of the stability performance of bridges in unbalanced states under single-side joint support configurations and analyzes the mechanical performance and stability under different gaps and impact velocities during rotation. The result is that the impact acceleration, angular acceleration of rotation, and tilt angle (gap) increase displacement and stress in the support system, posing a significant safety risk. The present research demonstrates the safety and rationality of the proposed unbalanced rotation and provides control limits for tilt angle and rotation acceleration during the rotation process. These results demonstrate that the proposed support mode ensures safety requirements during unbalanced rotation, offering insights for the design and construction of large-tonnage rotational bridges.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810603
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine