0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Relationship between Strength and Water-Cement Ratio for the EPS Silt Light-Weight Soil Based on Gray Verhulst Model

Author(s):
Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 9
Page(s): 627-630
DOI: 10.2174/1874149501509010627
Abstract:

PS silt mixed soil is a high quality synthetic fill material made of foam material and sludge wasted. This paper indicates according to the test results and the previous studies that: the intensity of light-weight soils is increasing as the grey water ratio increases, and when the gray water ratio reaches a certain value, the strength of the growth rate is not large. Therefore, the research of the relationship of its strength and water-cement ratio for providing accurate design parameters of soil particles lightweight soil is very important. According to existing research results, a number of samples were made to study the relationship between strength and water-cement ratio, then the analyzed curves were obtained. In this paper, based on the gray Verhulst model, the variation regulation between the strength and water ratio was fitted. The study showed that the fitted curve was similar with the measured curve. It is found that the measured curves can be derived from fitted curve available, the related research can give good references for construction of EPS silt light-weight soil.

Copyright: © 2016 Yong Feng
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10175533
  • Published on:
    30/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine