A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide
Author(s): |
Ahmed M. Maglad
Osama Zaid Mohamed M. Arbili Guilherme Ascensão Adrian A. Șerbănoiu Cătălina M. Grădinaru Rebeca M. García Shaker M. A. Qaidi Fadi Althoey Jesús de Prado-Gil |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 31 July 2022, n. 8, v. 12 |
Page(s): | 1066 |
DOI: | 10.3390/buildings12081066 |
Abstract: |
This paper reports the results of a study conducted to examine the impacts of adding graphene oxide (GO) to GBFS-fly ash-based geopolymer concrete. The geopolymer concrete’s compressive strength, thermal conductivity, and modulus of elasticity were assessed. X-ray diffraction (XRD) analysis was conducted to understand the differences in mineralogical composition and a rapid chloride penetration test (RCPT) to investigate the changes in the permeability of chloride ions imposed by GO addition. The results showed that adding 0.25 wt.% GO increases the modulus of elasticity and compressive strength of GBFS-FA concrete by 30.5% and 37.5%, respectively. In contrast, permeability to chloride ions was reduced by 35.3% relative to the GO-free counterparts. Thermal conductivity was decreased as GO dosage increased, with a maximum reduction of 33% being observed in FA65-G35 wt.% samples. Additionally, XRD showed the suitability of graphene oxide in geopolymer concrete. The present research demonstrates very promising features of GO-modified concrete that exhibit improved strength development and durability compared to traditional concrete, thus further advocating for the wider utilization of geopolymer concrete manufactured from industrial byproducts. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.21 MB
- About this
data sheet - Reference-ID
10688741 - Published on:
13/08/2022 - Last updated on:
10/11/2022