0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Mechanical Response Mechanism and Damage Behavior of a Tunnel Lining Structure under Reverse Fault Dislocation

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1521
DOI: 10.3390/buildings12101521
Abstract:

In this paper, the mechanical response mechanism and damage behavior of a railway tunnel lining structure under reverse fault dislocation were studied. The damage behavior of railway tunnel linings under reverse fault dislocation was validated by undertaking laboratory tests and three-dimensional numerical simulations, where Coulomb’s friction was used in the tangential direction of the interface. The failure damage, which increasingly accumulates with displacements, mainly concentrates in fault fracture neighborhoods 0.5 D to 1.5 D (D is the tunnel diameter) within the footwall. The maximum surrounding rock pressure and the maximum longitudinal strain develop in the tunnel near the hanging wall area. The damage begins as longitudinal cracking of the inverted arch. With the increase in dislocations, those cracks develop upward to the arch foot and the waist. Consequently, those oblique cracks separate lining segments, leading to abutment dislocation. The research results provide technical guidance and theoretical support for on-site construction and follow-up research, and they have important application value.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699813
  • Published on:
    11/12/2022
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine