0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Influence and Optimization Design of Viscous Damper Parameters on the Damping Efficiency of Frame Shear Wall Structure

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 14
Page(s): 497
DOI: 10.3390/buildings14020497
Abstract:

This study investigates the influence of viscous damper parameters on the damping efficiency of frame shear wall structures. Taking a specific frame shear wall structure as the background, a three-dimensional finite element model is established using a nonlinear dynamic time–history analysis method. The damping ratio, reduction in vertex displacement, reduction in base shear, and inter-story drift utilization rate are selected as the damping performance indicators. Firstly, a sensitivity analysis is conducted to study the influence of different viscous damper parameters on these indicators. Then, the relationship models between the viscous damper parameters and the indicators are fitted using the response surface method, and the fitting effect is evaluated through an F-test and determination coefficient R2. Finally, an objective function based on key damping performance indicators is established to solve for the optimal parameters. The results show that the traditional sensitivity analysis method is unable to comprehensively consider the combined effects of different damping efficiency indicators. The response surface method has high fitting accuracy and good predictability and can serve as an optimization model. Considering the stiffness of supporting components matched with the viscous damper parameters, the feasibility of the optimal damping parameters is demonstrated from an engineering application perspective. A simple and easy-to-operate damping design flowchart is proposed, providing important guidance and reference for designers in frame shear wall structure damping design in the future.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773832
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine