0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Impact of Design Factors of Piloti Forms on the Thermal Environment in Residential Quarters

Author(s):

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 14
Page(s): 1303
DOI: 10.3390/buildings14051303
Abstract:

According to piloti design, the outdoor thermal environment can be improved in cities with hot summer conditions. Taking Chinese cities with a hot summer and cold winter as the research object, this paper discusses the improvement of the outdoor thermal environment of residential districts in summer by considering piloti design factors. In this article, according to our investigation of piloti design in Wuhan, a basic model of the overhead layer in the Wuhan residential area is presented, along with the effects of different piloti ratios (0–80%), piloti heights (2–6 m), and greening rates (30–35%) on the outdoor thermal environment of buildings. The average air temperature and average wind speed at the pedestrian level are used as outdoor thermal environment indicators, the average PET is used as the outdoor thermal comfort indicator, and the comfort wind ratio is used as the outdoor wind comfort indicator. The results show that increasing the ratio of corridor columns has the greatest thermal comfort enhancement effect in the corridor area, and when the piloti ratio increases from 20% to 80%, the PET in piloti areas reduces by 2.926 °C. Improving the greening rate has the greatest thermal comfort enhancement effect in the passageway area, and when the greening rate increases from 20% to 80%, the PET in piloti areas reduces by 0.9 °C. Furthermore, the increases in both the piloti ratio and piloti height have an enhancement effect on the outdoor wind environment and wind comfort, with thresholds of a piloti ratio over 60% and a piloti height over 5 m. In contrast, the increase in the greening rate will deteriorate the outdoor wind environment and wind comfort. The conclusions of this study are of great significance for the planning and design of overhead layers in residential areas in hot and humid areas in summer.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787472
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine