0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Force Model of Squeezed Branch Piles Based on Surface Potential Characteristics

Author(s):
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 13
Page(s): 2231
DOI: 10.3390/buildings13092231
Abstract:

Squeezed branch piles, which boast the advantages of great bearing capacity, small settlement, and good stability, are an important infrastructure in the foundation of buildings, and their safety state is related to the safety of the entire structure. As a non-destructive testing method, surface potential can be used to effectively evaluate the damaged state of a pile foundation without destroying its stability. On this basis, in this study, the characteristics of surface potential change during settlement and deformation of squeezed branch piles under graded loading were tested and analyzed with the aid of a self-made loading system of reaction beams and an LB-IV multi-channel potential data acquisition system. The results show that: Under graded loading, squeezed branch piles can produce surface potential signals whose intensity can well reflect the settlement and local failure characteristics of the pile foundation; The potential signals change in advance of load; and they fluctuate violently before local fracturing of squeezed branch piles. The unstable fluctuation of the potential signal can be regarded as a precursor to the fracturing of squeezed branch piles. The research results have positive theoretical significance and important application value for assessing the stability of both branch piles and their stress states on site and monitoring and forecasting the disaster of pile foundation instability.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10740668
  • Published on:
    12/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine