0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Study on the Feasibility and Strategy of Developing Photovoltaic Integrated Shading Devices in Street Canyons

Author(s): ORCID







Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1111
DOI: 10.3390/buildings14041111
Abstract:

The measurement and analysis of the spatial attributes of the street canyon hold significant importance in the advancement of photovoltaic integrated shading devices (PVSDs). This study offers the space aspect ratio index AR(h) as a more efficient method for determining the optimal location for installing PVSDs on building facades in various street canyons. The AR(h) index addresses the limitations of the current quantitative index. This study examined the evolving regulations of indoor thermal conditions, natural lighting, and the performance of PVSDs in various street canyons. It assessed the viability of implementing PVSDs in different canyons and suggested development plans based on the variation law. The findings demonstrated that AR(h) is capable of effectively assessing and directing the implementation of PVSDs. When AR(h) is below 0.6, the shade of surrounding buildings has the least impact on the photovoltaic power output and building energy consumption in various street canyons. In this scenario, the building has the largest yearly energy-saving rate, making it highly ideal for implementing PVSDs on the building façade. In summary, the suitability of the AR(h) index in various street sceneries was assessed, offering valuable insights for the widespread implementation of PVSDs and street planning, thereby optimizing the utilization of solar energy. The findings of this study will be advantageous in diminishing the utilization of non-renewable energy sources in urban areas and mitigating carbon emissions to safeguard the environment.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773550
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine