0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Evolution Characteristics of Two-Zone Failure Mode of the Overburden Strata under Shallow Buried Thick Seam Mining

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-9
DOI: 10.1155/2019/9874769
Abstract:

There are risks of water burst and sand inrush in the working face of the Northwest Mining Area in China. Based on the 22407 working face of Halagou coal mine, the evolution characteristics and mechanism of a two-zone failure mode of the overburden strata in shallow buried thick seam mining were thoroughly analysed using physical modelling, theoretical analysis, on-site observation, and other research methods. A method to calculate the overburden fissure width was also proposed. The analysis results indicated that the evolution of a two-zone failure mode of the overburden strata mainly includes four stages: gestation, formation, transformation, and stabilization. In the transformation stage, a fracture zone is transformed into a caving zone. The caving zone and fracture zone are separately transferred to the working face direction based on the structure type of key strata of voussoir beam and cantilever beam after the heights of the two zones stabilize, and the “two-belt” cracks are mainly composed of inclined and horizontal fissures. Based on this study, the mechanism of the two-zone failure mode of overburden strata development was analysed according to the mining height and overburden strata key layer structure. This paper serves as a guide for safe and green mining on shallow buried thick seams.

Copyright: © 2019 Daming Yang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10311723
  • Published on:
    17/04/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine