Study on the Effect of Silica–Manganese Slag Mixing on the Deterioration Resistance of Concrete under the Action of Salt Freezing
Author(s): |
Jingjing He
Chuanwu Sun Wei Hu Zhipeng Ni Xiangwen Yin Xuezhi Wang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2024, n. 9, v. 14 |
Page(s): | 2684 |
DOI: | 10.3390/buildings14092684 |
Abstract: |
The use of silico-manganese slag as a substitute for cement in the preparation of concrete will not only reduce pollution in the atmosphere and on land due to solid waste but also reduce the cost of concrete. To explore this possibility, silico-manganese slag concrete was prepared by using silico-manganese slag as an auxiliary cementitious material instead of ordinary silicate cement. The mechanical properties of the silico-manganese slag concrete were investigated by means of slump and cubic compressive strength tests. The rates of mass loss and strength loss of silico-manganese slag concrete were tested after 25, 50, and 75 cycles. The effect of the silica–manganese slag admixture on the microfine structure and properties of concrete was also investigated using scanning electron microscopy (SEM). Finally, the damage to the silica–manganese slag concrete after numerous salt freezing cycles was predicted using the Weibull model. The maximum enhancement of slump and compressive strength by silica–manganese slag was 17.64% and 11.85%, respectively. The minimum loss of compressive strength after 75 cycles was 9.954%, which was 34.96% lower than that of the basic group. An analysis of the data showed that the optimal substitution rate of silica–manganese slag is 10%. It was observed by means of electron microscope scanning that the matrix structure was denser and had less connected pores and that the most complete hydration reaction occurred with a 10% replacement of silica–manganese slag, where an increase in the number of bladed tobermorite and flocculated C-S-H gels was observed to form a three-dimensional reticulated skeleton structure. We decided to use strength damage as a variable, and the two-parameter Weibull theory was chosen to model the damage. The final comparison of the fitted data with the measured data revealed that the model has a good fitting effect, with a fitting parameter above 0.916. This model can be applied in real-world projects and provides a favorable basis for the study of damage to silica–manganese slag concrete under the action of salt freezing. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
12.34 MB
- About this
data sheet - Reference-ID
10795210 - Published on:
01/09/2024 - Last updated on:
01/09/2024