0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Effect of Radiant Insulation Panel in Cavity on the Thermal Performance of Broken-Bridge Aluminum Window Frame

Author(s): ORCID






Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 58
DOI: 10.3390/buildings13010058
Abstract:

Windows have a great impact on building energy consumption, and the thermal performance of window frames directly affects its energy-saving potential. In this paper, a novel method is proposed to optimize the thermal performance of commercially available broken-bridge aluminum window frames, by incorporating radiant insulation panels (RIPs) into the window frame cavity. A typical aluminum alloy window frame heat transfer model is theoretically analyzed and validated, and the effects of key design parameters on the equivalent thermal conductivity (ETC) of the cavity radiation heat transfer and the heat transfer coefficient (U-factor) of window frames are quantitatively analyzed by a finite element simulation method using the THERM software. Moreover, the RIP, the insulation material filling, and low surface emissivity on the thermal performance of the window frame are compared and analyzed. The results show that the RIP is better placed in the middle, the width and quantity of RIPs are negatively correlated with the U-factor, while the surface emissivity of RIPs is positively correlated with the U-factor. Adding RIPs in the cavity can reduce the U-factor of the window frame by more than 7.43%, slightly lower than 8.97% for the filling type, but significantly higher than 0.81% for the low-emissivity type. Inserting RIPs is a simple and effective way to reduce the U-factor of the window frame and have a great potential of use.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712258
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine