0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on the Applicable Room Size Dimension of Stratum Ventilation for Heating Based on Multi-Criteria Analytic Hierarchy Process-Entropy Weight Model

Author(s): ORCID




Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 381
DOI: 10.3390/buildings13020381
Abstract:

With the implementation of clean heating and the outbreak of COVID-19, stratum ventilation with both energy-saving and healthy indoor environments has become a research hotspot. Room size dimension is one of the critical factors affecting the air distribution, thermal comfort, and ventilation performance of space heating, which is still a research blank at present. This study determined the applicable room size dimension of stratum ventilation for space heating by using a multi-criteria analytic hierarchy process-entropy weight (AHP-EW) model. A computational fluid dynamics (CFD) simulation verified by experiments was conducted. To investigate the ventilation performance of different room sizes in energy utilization and thermal comfort, airflow distribution, ventilation efficiency (Et), dimensionless temperature, effective ventilation temperature (EDT), air distribution performance index (ADPI), and predicted mean vote (PMV) were calculated. The multi-criteria AHP-EW method is used to evaluate every case comprehensively. The results show that the maximum room size obtained by multi-criteria APH-EW is 6 m, and considering the single criteria, the suitable height for stratum ventilation for heating is below 5.7 m. The data obtained in this paper can be used as a reference for further study on the application of stratum ventilation and heating in the future.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712429
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine