0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Stability Reduction Characteristics of Earth and Rockfill Dams under Rapid Drawdown Using Fully Coupled Seepage-Stress Analysis

Author(s):
ORCID



Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-13
DOI: 10.1155/2022/7954991
Abstract:

It can be a great expense to examine individually the stability of earth and rockfill dams on rapid drawdown in civil engineering practice. The aim of this present work is to clarify the safe type on the rapid drawdown among the most common types of earth and rockfill dams and to introduce cheaply the types in dam design. First, a transient analysis of saturated-unsaturated seepage coupled with stress is carried out in the cross sections of typical earth and rockfill dams the during rapid drawdown, and the safety factors of the upstream slopes are determined by the shear strength reduction method. Then, the typical dams are compared for the stability characteristics so that designers can select the safe type of earth and rockfill dams on rapid drawdown. The obtained results show that the decreasing rate of safety factor in a central core dam is 0.72–0.85 times than one of the homogeneous dams and 0.17–0.40 times than one of the sloping upstream core dams so that it is more stable than other earth and rockfill dams during rapid drawdown.

Copyright: © 2022 Yong Nam Ri et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657365
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine