0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Rock Burst Early Warning in the Working Face of Deep Coal Mines Based on the Law of Gas Emission

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/9940505
Abstract:

This study is aimed at predicting rock burst disasters in high gas mines. First, the distribution law and correlation of gas and stress in the F15-17-11111 working face of Pingdingshan No. 13 Mine were analyzed based on the coupling relationship between gas emission and stress in the working face. Next, the relationship between gas emission and stress distribution was revealed, and an early warning method of rock burst in the deep mine working face based on the law of gas emission was proposed and applied to the F15-17-11111 working face. Finally, the critical value of the gas concentration indicator for rock burst early warning in the F15-17-11111 working face was determined as 0.05%. The following research results were obtained. The gas emission and the mining stress in the F15-17-11111 working face are negatively correlated. Mechanically, their correlation satisfies the typical coupling. Besides, the critical value of the gas concentration indicator determined by the proposed early warning method boasts high accuracy in predicting rock burst disasters. It can be used as an early warning method for underground rock burst disasters to promote the safety of working face mining. The research results provide reference and guidance for the monitoring and early warning of rock burst disasters in deep high gas mines.

Copyright: © Qinghua Zhang and Shudong He et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10607765
  • Published on:
    15/05/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine